CURCUMIN AND LONG-CHAIN OMEGA-3 POLYUNSATURATED FATTY ACIDS: EFFECTS ON GLYCAEMIC CONTROL AND BLOOD LIPIDS

Rohith N Thota B. Pharm., M. Pharm. (Pharmacology)

Thesis submitted in the fulfilment of the requirements for the degree of Doctor of Philosophy in Pharmacy

Nutraceuticals Research Program, Department of Pharmacy and Experimental Pharmacology, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle

APRIL, 2018

Statement of originality

This thesis contains no material which has been accepted for the award of any other

degree or diploma in any university or other tertiary institution and, to the best of my

knowledge and belief, contains no material previously published or written by another

person, except where due reference has been made in the text. I give my consent to this

copy of my thesis, when deposited in the University Library, being made available for

loan and photocopying subject to the provision of the Copyright Act 1968.

Statement of collaboration

I hereby certify that some of the work embodied in this thesis has been done in

collaboration with other researchers, or carried out in other institutions. I have included

as part of the thesis a statement clearly outlining the extent of collaboration, with whom

and under what auspices.

Statement of authorship

I hereby certify that this thesis is in the form of a series of published papers of which I am

a joint author. I have included as part of my thesis a written statement from each co-

author, endorsed by the Faculty Assistant Dean (Research Training), attesting to my

contribution to the joint publications.

Mr Rohith N Thota

13/04/18

ii

Acknowledgements

In my intriguing PhD journey, there are many people to whom I would be grateful forever. They have supported me to keep up my promises and always reminded me of how far I have come and how far I still want to go.

First, I would like to extend heartfelt gratitude to my primary supervisor, Professor Manohar Garg. From the time of my PhD application to date, the support you have provided to me is invaluable. Your 'open door policy' and endless availability has provided me with your insights and expertise. The countless times I had knocked your office door, you have always provided me the clarifications I needed without any sign of hesitation. Thank you for introducing me to the amazing 'coffee' that we get in Australia and the insightful discussions we have during our coffee breaks. One of your advices "take ownership of your project, learn as much as you can, celebrate every small achievement" had a great impact on me and will always remember this. It was an absolute pleasure and privilege to have you as my mentor, and I hope we can continue working together to create more innovative works like 'InsuTAG'.

It was a wonderful opportunity to work with my co-supervisor, Dr Sham Acharya. I would like to thank you for providing the clinical insights into management and prevention of type 2 diabetes and for the opportunity to interact with many clinicians across general practises and John Hunter Hospital. I always learned new things form the discussion on our journeys to the presentation venues and other clinics. Despite of your busy schedule and clinical appointments, you have always provided me with time to meet whenever I required.

I would like to thank University of Newcastle and the Donor (Mr Eric Sansom) for providing me with financial support during my PhD candidature.

I am very grateful to Kylie Abbott, the super mum of three kids, for all the countless discussions during my PhD journey. Despite of the festival time and her other commitments, the amount of support she provided for the InsuTAG project was indispensable. We have co-authored 5 publications together and I hope we continue to work together to add more to our list.

To, Melissa Fry, Thank you for all your help and support. Particularly for all those early morning starts and for driving me around to the local hospitals. Thanks for being an amazing friend and coffee buddy.

Jessica Ferguson, it was great to share the office space with you and I thank you for being a great office buddy over the last couple of years. The surprise you had planned for my last birthday was one of the unforgettable moments of my life.

I would like to thank all the participants who participated in our clinical trials and in the Retirement Health and Lifestyle study for their support to the advancement of the scientific knowledge.

I would like to thank Mr Jeff Stormer, for his help and support with recruitment of trial participants. I also would like to thank Dr Cintia Dias for her assistance with statistical analysis in one of my trials and Mr Anu Alex for helping with methylation of samples for fatty acid analysis.

Following relocation from India, I have made good friends and that will continue into future, Ms Benjaporn Meeprom, Dr Raj Kumar Yadav, Assistant Professor Justin Francis Leon Nicolas, Mr Soobhiraj Bungsraz and Dr Faizan Jameel, thank you all from the bottom of my heart for your support, professional and personal advices and friendship. Thanks for making my PhD journey a collection of wonderful life time memories with your company.

Finally, I would like to thank my dad, mom, brother and grandparents for encouraging me to pursue my dreams. Thank you for your emotional and financial support. I am hoping to see you soon to share this incredible journey to you in person.

List of research publications included in the thesis

1. Chapter 3

Thota RN, Abbott KA, Ferguson JJA, Veysey M, Lucock M, Niblett S, King K, Garg ML. InsuTAG[®]: A novel physiologically relevant predictor for insulin resistance and metabolic syndrome. Scientific Reports 2017;7 (1):15204.

(InsuTAG $^{\otimes}$ - obtained registered/protected status with IP Australia, trademark registered number - 1824921).

2. Chapter 4

Thota RN, Dias CB, Abbott KA, Acharya SH, Garg ML. Curcumin alleviates postprandial glycaemic response in healthy subjects: A cross-over, randomized controlled study. Manuscript submitted MAR 2018.

3. Chapter 5

Thota RN, Acharya SH, Abbott KA, Garg ML. Curcumin and long-chain Omega-3 polyunsaturated fatty acids for Prevention of type 2 diabetes (COP-D): study protocol for a randomised controlled trial. Trials 2016; 17:565.

4. Chapter 6

Thota RN, Acharya SH, Garg ML. Effects of curcumin and/or omega-3 polyunsaturated fatty acids on glycaemic control and blood lipids in individuals with high risk of type 2 diabetes: A randomised controlled trial. Manuscript Submitted MAR 2018.

Other co-authored publications

- 1. Jameel F, **Thota RN**, Wood LG, Plunkett B, Garg ML. Sex-dependent association between circulating irisin levels and insulin resistance in healthy adults. Journal of Nutrition & Intermediary Metabolism 2015; 2(3–4):86-92.
- Abbott KA, Burrows TL, Thota RN, Acharya S, Garg ML. Do omega-3 PUFAs
 affect insulin resistance in a sex-specific manner? A systematic review and metaanalysis of randomized controlled trials. American Journal of Clinical Nutrition 2016;
 104 (5):1470-84.
- 3. **Thota RN**, Ferguson JJA, Abbott KA, Dias CB, Garg ML. Science behind the health benefits of omega-3 polyunsaturated fatty acids: biochemical effects vs clinical outcomes. Food and Function 2018; doi:10.1039/c8fo00348c.

Conference presentations

- Oral presentation on "Sex-dependent relationship between n-3 long-chain polyunsaturated fatty acids and insulin resistance: A Systematic review and Metaanalysis" at Joint Annual Scientific Meeting of the Nutrition Society of NZ and the Nutrition Society of Australia. 1-4 December 2015; Wellington, New Zealand.
- Oral Presentation on "InsuTAG: A novel and physiologically relevant predictor
 of insulin resistance and metabolic syndrome" at Asia Pacific Conference on
 Clinical Nutrition. 26-29 November 2017; Adelaide, Australia.

Scholarships

During my PhD, I have been supported by Neville Eric Sansom Scholarship for living expenses and University of Newcastle Postgraduate Research Scholarship to cover my tuition fees (4 years).

Awards and media appearances

- Best theme paper 2017; Clinical and Experimental Nutrition; by Priority Research Centre for Physical Activity and Nutrition
- Innovation award 2017 PhD student category; by Priority Research Centre for Physical Activity and Nutrition
- 3. Publication of the month OCT 2017 School of Biomedical Sciences and Pharmacy

Media activities

- 1. Turmeric + fish oil could prevent type 2 diabetes ABC NEWS 15 JUL 2015
- 2. Trial tests the healing properties of turmeric Newcastle Herald 15 JUL 2015
- 3. Australian scientists to test Indian spice in type 2 diabetes prevention China.org.au 17 JUL 2015
- 4. Australian study investigating Indian spice as type 2 diabetes treatment Diabetes UK 17 JUL 2015
- 5. Turmeric may help treat diabetes Press Club of India 18 JUL 2015
- Turmeric and Omega-3 could prevent type 2 diabetes Saturn Herald 29 JUL 2015
- Invited to present research during Hunter Science Festival, Science Week AUG 2015
- 8. Radio Interview 'Reducing the risk factors for type 2 diabetes' 2NURFM 24 NOV 2015 (https://www.youtube.com/watch?v=zVu-uB29Dc8)
- 9. Radio Interview Diabetes survey 2NURFM 4 JUL 2016 (https://www.youtube.com/watch?v=xzlNLrB0WFo)
- 10. Radio Interview Curcumin and Omega-3 fatty acids for management of heart disease risk in type 2 diabetes - 2NURFM – 3 MAR 2017
- 11. Radio Interview Curcumin and Omega-3 fatty acids for management of heart disease risk in individuals with type 2 diabetes - ABC Newcastle Drive – 19 OCT 2016

Table of contents

Ack	cnowledgements	iii
List	of research publications included in the thesis	v
Oth	er co-authored publications	vi
Con	nference presentations	v
Sch	olarships	v
Aw	ards and media appearances	vi
Med	dia activities	vi
List	of figures	xiii
List	of tables	xiv
List	of appendices	XV
Abb	previations	xv
•	opsis	
	sis layout	
	PTER 1 General Introduction	
1.1	Overview	
1.2	Background and context	
	1.2.1 Prevalence and diagnostic criteria of T2D and prediabetes	
	1.2.2 Economic burden and health consequences of T2D	28
1.3	Multi-stage model development of T2D	28
1.4	Necessity for the improved markers	34
1.5	Current available interventions for prevention and management of T2D	35
1.6	Role of bio-actives in prevention of T2D	36
	1.6.1 Curcumin	36
	1.6.2 Long chain omega-3 polyunsaturated fatty acids (LCn-3PUFA)	41
	1.6.3 Chlorogenic acid	47
	1.6.4 Resveratrol	48
1.7	Conclusion of the literature review and project rationale	49
1.8	Research Aims	52
CHAI	PTER 2 General Methods	54
2.1	Participant Recruitment	55
2.2	Anthropometry and Body Composition	55
2.3	Ouestionnaires	55

	2.3.1 Medical History	55
	2.3.2 Nutrition assessment	56
	2.3.3 Physical Activity	56
2.4	Randomisation	56
2.5	Interventions	
2.6	Clinical Trials	57
	2.6.1 Trial 1- Acute postprandial cross over s	tudy 57
	2.6.2 Trial 2 - Curcumin and/or Omega-3 po	lyunsaturated fatty acids for Prevention of
	T2 D (COP-D trial)	58
	2.6.3 Trial 3 - Curcumin And/or Long-chain	omega-3 polyunsaturated fatty acids FOR
	management of CardioVascular health in ind	ividuals with T2 D (CALFOR-CVD trial)
		60
2.7	Blood collection	62
2.8	Biomarker analysis	62
	2.8.1 Markers of glycaemic control	62
	2.8.2 Lipid parameters	63
	2.8.3 Inflammation and other markers	63
	2.8.4 Formula based markers	63
	2.8.5 Safety monitoring and compliance	63
	PTER 3 InsuTAG: A novel physiologically rele	-
	polic syndrome	
3.1	Abstract	
3.2	Introduction	
3.3 3.4	Methods	
3.4	Discussion	
	PTER 4 Curcumin alleviates postprandial gly	
	over, randomised controlled study	-
4.1	Abstract	81
4.2	Introduction	82
4.3	Methods	83
	4.3.1 Subjects	
	4.3.2 Standard meal	83

	4.3.3 Study design	83
	4.3.4 Test day protocol	84
	4.3.5 Statistics	84
4.4	Results	85
	4.4.1 Participant characteristics	85
	4.4.1 Physical activity and dietary intake	85
	4.4.2 Postprandial glucose levels	85
	4.4.3 Postprandial insulin	86
	4.4.4 Postprandial triglycerides	86
	4.4.5 Confounding variables	86
4.5	Discussion	92
	PTER 5 Curcumin and long-chain Omega-3polyunsaturated fatty acids f	
-	ntion of type 2 Diabetes (COP-D): Study protocol for a randomised cont	
5.1	Abstract	
5.2	Background	97
5.3	Method/design	99
	5.3.1 Study Aims	99
	5.3.2 Inclusion criteria	99
	5.3.3 Exclusion criteria	100
	5.3.4 Sample size calculation	100
	5.3.5 Participant recruitment	100
	5.3.6 Baseline assessments	101
	5.3.7 Randomisation	101
	5.3.8 Intervention	101
	5.3.9 Interim visit	102
	5.3.10 Post intervention visit	102
	5.3.11 Safety and compliance monitoring	102
	5.3.12 Ethics	103
	5.3.13 Data collection and outcome measures	103
	5.3.14 Data analysis	104

5.4	Discu	ssion	104
5.5	Streng	gths and limitation of study design	108
contro	l and	Effects of curcumin and/or omega-3 polyunsaturated fatty acids on g blood lipids in individuals with high risk of type 2 diabetes: A rar ial	ndomised
6.1	Abstr	act	112
6.2	Introd	luction	113
6.3	Metho	ods	114
	6.3.1	Subjects	114
	6.3.2	Study design	115
	6.3.3	Data collection and outcome measures	115
	6.3.4	Statistical analysis	116
6.4	Resul	ts	117
	6.4.1	Baseline characteristics	117
	6.4.2	Body composition	117
	6.4.3	Glycaemic indices	117
	6.4.4	Blood lipids	118
	6.4.5	Inflammation and blood cell count	118
	6.4.6	Dietary intake, physical activity, compliance and adverse effects	118
6.5	Discu	ssion	128
		Curumin and/or omega-3 polyunsaturated fatty acids for ameliorati	
	-	ipidaemia: A pilot randomised controlled trial	
7.1 7.2		actluction	
7.2		ods	
7.5		Subjects	
	7.3.2	Study Design	136
	7.3.3	Data collection and outcome measures	137
	7.3.4	Statistical analysis	138
7.4	Resul	ts	138
		Baseline participant characteristics	
	7.4.2	Blood lipids	139
	7.4.3	Glucose control and other secondary outcome measures	139

	7.4.4 Dietary intake, physical activity, compliance and fatty acid changes	140
7.5	Discussion	147
CHAP	TER 8 General Discussion	151
8.1	Key findings	152
	8.1.1 Novel marker, InsuTAG, shows superiority in identifying IR and MetS than	the
	existing markers	152
	8.1.2 Curcumin effectively lowered PBG levels, but did not show any effect on FPG	and
	HbA1c	153
	8.1.3 Curcumin effectively lowered both postprandial & fasting insulin levels	and
	improved IS	154
	8.1.4 Magnitude of reduction in blood lipids by curcumin was higher in individuals	with
	T2D compared with the reductions in those with high risk of T2D	156
	8.1.5 LCn-3PUFA lowers FPG in individuals with baseline FPG level above 5.5 mm	ol/L
		157
	8.1.6 LCn-3PUFA supplementation reduces erythrocyte arachidonic acid levels, but	t has
	no effect on CRP	
	8.1.7 Both LCn-3PUFA and curcumin exhibit similar magnitude of reduction	n in
	InsuTAG	
	8.1.8 Complementary or added benefits with curcumin and LCn-3PUFA were observed in all the three intervention studies	
8.2	Limitations	
	8.2.1 Feasibility of recruiting study participants with pre-diabetes and T2D	
	8.2.2 Heterogeneity in the study populations	161
	8.2.3 Different available formulations of curcumin and fish oil	162
8.3	Conclusions	162
D.C		

List of figures

Figure 1.1: Multi-stage model development of T2D	34
Figure 1.2: Structures of a. curcumin b. demethoxycurcumin c. bisdemethoxycurcumin	36
Figure 1.3: Structures of Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA)) 41
Figure 1.4: Structure of chlorogenic acid	47
Figure 1.5: Structure of resveratrol	48
Figure 1.6: Rationale for combination of curcumin and LCn-3PUFA	51
Figure 1.7: Summary of literature review and research aims	53
Figure 3.1: Scatterplot of InsuTAG and HOMA-IR.	76
Figure 3.2: Receiver operating characteristic (ROC) curves for identifying Insulin Resista	ance
(IR) using surrogate markers of IR.	76
Figure 3.3: Receiver operating characteristic (ROC) curves for identifying Metabolic Syr	ndrome
(MetS) using InsuTAG and HOMA-IR.	77
Figure 4.1: CONSORT flow chart	90
Figure 4.2: Changes in the mean blood glucose levels (Δglucose) over 120 minutes	91
Figure 4.3: Changes in the mean serum insulin levels (Δinsulin) over 120 minutes	91
Figure 4.4: Changes in the mean serum triglyceride levels (Δtriglycerides) over 120 minu	ites. 92
Figure 5.1: Trial protocol flow chart	109
Figure 6.1: Consolidated Standards of Reporting Trials (CONSORT) flow chart	119
Figure 6.2: Changes in the outcome measures from baseline to post intervention with-in a between double placebo (PL), curcumin (CC), fish oil (FO) and curcumin + fish oil (CC-I	
	120
Figure 6.3: Changes in the outcome measures from baseline to post intervention and between	veen
double placebo (PL), curcumin (CC), fish oil (FO) and curcumin + fish oil (CC-FO);	121
Figure 6.4: Changes in the outcome measures from baseline to post-intervention in peopl	e with
FPG >5.5 and <5.5 in PL, CC, FO and CC-FO groups.	127
Figure 7.1: Consolidated Standards of Reporting Trials (CONSORT) flow chart	145
Figure 7.2: Changes in the blood lipids from baseline to post-intervention with-in and bet	tween
the PL, CC, FO, and CC-FO.	146
Figure 8.1: Summary of the effects of curcumin on glycaemic control and blood lipids	155
Figure 8.2: Summary of the effects of LCn-3PUFA on glycaemic control and blood lipids	s 159

List of tables

Table 1.1: Diagnostic criteria for T2D and prediabetes 27
Table 3.1: Participant characteristics of all participants and for participants stratified into
subgroups by IR status
Table 3.2: Correlations between contributors to insulin resistance, InsuTAG, and other
surrogate markers of insulin resistance
Table 3.3: Regression models for predicting IR 74
Table 3.4: Predictive values of proposed InsuTAG cut-off of 11.2 for the identification of IR
and MetS
Table 3.5: Participant characteristics and metabolic parameters of participants stratified into
subgroups according to the proposed InsuTAG cut-off of 11.2
Table 4.1: Baseline characteristics of the participants 88
Table 4.2: Composition of the habitual diets as consumed 24 hours before the PL, FO, CC and
CC-FO test days
Table 4.3: Baseline values, change area under the curve (AUC) for glucose, insulin,
triglycerides in response to PL, FO, CC and CC-FO
Table 5.1: Study timeline and Assessments 110
Table 6.1: Baseline general characteristics of the study population: 122
Table 6.2: Baseline blood parameters of the trial participants 123
Table 6.3: Changes in the outcome measures from baseline to post-intervention
Table 6.4: Changes in the dietary intake, physical activity and fatty acid composition of the red
blood cells of the participants
Table 6.5: Mean changes in outcome measures stratified by sex within PL, CC, FO and CC-FO
groups
Table 7.1: Baseline general characteristics of the trial participants 141
Table 7.2: Baseline blood parameters of the study participants
Table 7.3: Changes in the outcome measures from baseline to post-intervention
Table 7.4: Changes in the dietary intake, physical activity and fatty acid composition of the
study participants

List of appendices

Appendix 1: Recruitment flyer – Acute postprandial study	200
Appendix 2: Recruitment flyer – COP-D study	201
Appendix 3: Recruitment flyer – CALFOR-CVD Study	202
Appendix 4: Participant information sheet - Acute postprandial study	203
Appendix 5: Participant information sheet – COP-D study	208
Appendix 6: Participant information sheet – CALFOR-CVD study	213
Appendix 7: Participant consent form – Acute post-prandial study	219
Appendix 8: Participant consent form – COP-D study	220
Appendix 9: Participant consent form – CALFOR_CVD trial	221
Appendix 10: Medical history and screening form – Acute postprandial study	222
Appendix 11: Medical history and screening form – COP-D study	227
Appendix 12: Medical questionnaire – CALFOR-CVD study	231
Appendix 13: 24 hour food recall – Acute postprandial study	234
Appendix 14: 3-day food record – COP-D and CALFOR-CVD trial	236
Appendix 15: International Physical Activity Questionnaire – Short form	240
Appendix 16: International Physical Activity Questionnaire – Long form	241
Appendix 17: The Australian Type 2 Diabetes Risk Assessment Tool	242
Appendix 18: SPIRIT checklist for trial protocol	243
Appendix 19: Statement of contribution and collaboration for chapter 3	249
Appendix 20: Statement of contribution and collaboration for chapter 4	250
Appendix 21: Statement of contribution and collaboration for chapter 5	251
Appendix 22: Statement of contribution and collaboration for chapter 6	251

Abbreviations

ABS Australian Bureau of Statistics

AE Adverse events

AIHW Australian Institute of Health and Welfare

AIP Atherogenic index of plasma

ALT Alanine transaminase

AMPK 5' adenosine monophosphate-activated protein

kinase

ANCOVA Analysis of covariance
ANOVA Analysis of variance

ANZCTR Australian New Zealand Clinical Trials

Registry

AST Aspartate transaminase

ATF2 Activating transcription factor 2

AUSDRISK The Australian Type 2 Diabetes Risk

Assessment Tool

BFM Body fat mass

BMI Body mass index

CALFOR-CVD Curcumin And Long-chain omega-3

polyunsaturated fatty acids for management of

CardioVascular health in type 2 Diabetes.

CC Curcumin alone

CC-FO Curcumin plus fish oil
CCL-2 CC-chemokine ligand 2

COP-D Curcumin and/or Omega-3 polyunsaturated

fatty acids for Prevention of type 2 Diabetes

CRP C-reactive protein

CVD Cardiovascular disease

DHA Docosahexanoic acid

DPP-4 Dipeptidyl peptidase 4

EDTA ethylenediaminetetraacetic acid

ELK-1 E26 transformation specific containing

domain protein 1

EPA Eicosapentaenoic acid
ER Endoplasmic reticulum

FFA Free fatty acids
FO Fish oil alone

FPG Fasting plasma glucose

GIP Glucose-dependent insulinotropic polypeptide

GISSI-prevenzione Gruppo Italiano per lo Studio della

Sopravvivenza nell'infarto

GLP-1 Glucagon like peptide-1

GPR G-protein coupled receptors

HbA1c Glycosylated haemoglobin

HDL-C High density lipoprotein cholesterol

HEC Hyperinsulinemic euglycemic clamp

HMRI Hunter medical research institute

HNEHREC Hunter New England Human Research Ethics

Committee

HOMA Homeostatic model assessment
HOMA Homeostatic model assessment

HOMA-IR Homeostatic model assessment of IR

ICML Intramyocellular lipids

IDF International diabetes federation

IFG Impaired fasting glucose

IGT Impaired glucose tolerance

IKK Ikb kinase β

 $IL-1\beta$ Interleukin-1 beta

IL-6 Interleukin-6

IQR Interquartile range
IR Insulin resistance

IRS-1 Insulin receptor substrate-1

IS Insulin sensitivity

JELIS The Japan Eicosapentaenoic acid Lipid

Intervention Study

JNK JUN N-terminal kinase

LCn-3PUFA Long-chain omega-3 polyunsaturated fatty

acids

LDL-C Low density lipoprotein cholesterol

LXRα Liver X receptor alpha

MCP-1 Macrophage chemoattractant protein-1

MDA Malondialdehyde

MetS Metabolic syndrome

MM Muscle mass

NF-κB Nuclear factor kappa B

NLRP3 NOD, LRR and pyrin domain—containing 3

inflammasome

OGTT Oral glucose tolerance test

PBF Percent body fat

PBG Postprandial blood glucose

PI Postprandial insulin

PL Double placebo

PPAR-α Peroxisome proliferator-activated receptor

alpha sub unit

RHLS Retirement Health and Lifestyle Study

ROS Reactive oxygen species

SAE Serious adverse event

SBP Systolic blood pressure

SD Standard deviation

SEM Standard error of mean

SIRT1 Sirtuin1

SOSC3 Suppressor of cytokine signalling 3

STAT3 Signal transducer and activator of

transcription 3

SREBP-1c Sterol regulatory element-binding protein 1

T2D Type 2 diabetes

TC Total cholesterol

TG Triglycerides

TLR4 Toll like receptor-4

TNF-α Tumor necrosis factor - alpha

UoNHREC University of Newcastle Human Research

Ethics Committee

UPR Unfolded protein response

VLDL-C Very low density lipoprotein cholesterol

WC Waist circumference

WHR Waist – hip ratio

Synopsis

Type 2 diabetes (T2D) is the most common chronic metabolic disorder resulting from either deficit of insulin secretion and/or action. The transition of normal glucose tolerance to T2D is usually accompanied by a cluster of metabolic risk factors such as low-grade inflammation, oxidative stress, insulin resistance (IR) and dyslipidaemia. IR is one of the marked independent predictors among these cluster of metabolic abnormalities that mediates the transition in high risk states such as obesity, impaired glucose tolerance (IGT) and impaired fasting glucose (IFG) to overt T2D. IR also is often associated with decreased clearance of lipids and lipoprotein abnormalities, together representing a greater risk of cardiovascular disease (CVD) in both high risk and individuals with T2D. Several studies have employed lipid ratios, homeostatic models, and anthropometric measures as surrogate markers for predicting IR. However, none of these accounted for both insulin and lipid availability in a single model to predict IR or metabolic syndrome (MetS).

Therefore, the first aim of my PhD project, presented in the chapter 3, was to develop a novel marker for IR and MetS that accounts for both insulin and lipid availability in a single model. We proposed and evaluated a novel physiologically relevant marker, InsuTAG (product of fasting insulin and fasting triglycerides) as a predictor of IR and MetS. Cross-sectional analysis of data from the Retirement Health and Life-style Study (RHLS, n=618) showed that InsuTAG is a strong predictor of IR over existing lipid based surrogate markers and anthropometric measures. Receiver operating curve analysis indicated InsuTAG (93%) as the favourable marker for IR over other lipid based surrogate markers and anthropometry measures. Prevalence of MetS was significantly higher in individuals with InsuTAG values above the optimal cut-off value of 11.2. InsuTAG exhibited a greater area under than curve than HOMA-IR for identifying MetS. Together these observations indicate the potential of InsuTAG for predicting IR and MetS.

Despite effective lifestyle and pharmacological interventions, the prevalence of T2D is growing at an alarming rate in Australia, in line with global prevalence. Failure of long term compliance to these interventions is a major barrier for their effectiveness in halting the transition to T2D in high risk state individuals, indicating a necessity for alternative effective approach.

Given the fact that pathogenesis of T2D is chronic, complex and often involving multiple pathological pathways, use of well tolerated dietary bio-active compounds appears to be a potential strategy for delaying the onset of T2D. Several pre-clinical and *in-vitro* studies have reported the ability of dietary bio-actives to down regulate multiple pathological mechanisms (chronic low-grade inflammation, IR, oxidative stress and β-cell dysfunction) that are involved in the pathogenesis of T2D. We hypothesised that a combination of two lipid-lowering and anti-inflammatory dietary bio-active compounds, curcumin and long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA), could potentially act in multiple pathways to improve the glycaemic control in individuals at high risk of developing T2D.

My second aim, presented in chapter 4, was to evaluate the acute effects of curcumin and/or LCn-3PUFA on glycaemic responses. Therefore, in a randomised, cross over trial we investigated the postprandial glucose and insulin response to a single dose of curcumin and/or LCn-3PUFA in healthy individuals. The glucose levels were reduced by curcumin at as early as 30 min, and the maximum effect was observed at 60 min post meal consumption. Curcumin was found to be effective for lowering the insulin demand to control postprandial glucose levels. Similar results were observed following dietary supplementation with curcumin plus LCn-3PUFA. It was apparent that the postprandial effects on glycaemic control were primarily due to curcumin even in the combined treatment group. Thus, providing basis for long-term supplementation study with curcumin for glycaemic control.

In chapter 5, a detailed study protocol for 2x2 factorial placebo controlled, double blinded randomised trial with long term (12 weeks) curcumin and LCn-3PUFA supplementation (COP-D trial) was presented. In chapter 6, we examined the effects of curcumin with or without LCn-3PUFA on glycaemic control and blood lipid levels in people at high risk of T2D. 12 weeks of supplementation with curcumin has effectively reduced the fasting insulin levels and IR in individuals with high risk of T2D. Parallel to these results, both curcumin and LCn-3PUFA were able to reduce the fasting triglycerides and atherogenic index of plasma, however the magnitude of reduction was greater with LCn-3PUFA supplementation. InsuTAG levels were also reduced with curcumin and LCn-3PUFA supplementation. However, this study failed to show any complimentary effects with concurrent administration of curcumin and LCn-3PUFA. Though IR and fasting triglycerides, were effectively reduced by these two bio-actives, we did not find any

beneficial effects of curcumin and LCn-3PUFA supplementation on fasting glucose and glycosylated haemoglobin levels.

In chapter 7, we designed a study to target commonly prevalent dyslipidaemia with curcumin and/or LCn-3PUFA in individuals with T2D (CALFOR-CVD trial). Participants were randomised to either placebo or curcumin or LCn-3PUFA, or curcumin plus LCn-3PUFA for six weeks. This pilot study has demonstrated that supplementation of curcumin can effectively reduce the TG. Contrasting to the results from chapter 6, magnitude of reduction in triglycerides in this study was higher with curcumin than LCn-3PUFA. Preliminary observations also presented a non-significant, but a noteworthy reduction of 0.5 mmol/L in total cholesterol and LDL-Cholesterol with curcumin supplementation. In line with observations from the COP-D trial, curcumin and LCn-3PUFA did not have any complimentary and/or added benefits.

In conclusion, the results presented in this thesis demonstrate that InsuTAG has the potential to predict IR and MetS. This provides a basis for further research to validate InsuTAG with gold standard technique for IR and a longitudinal data analysis to determine the ability of InsuTAG to predict T2D in general population. With regards to the intervention trials, our hypothesis of targeting multiple pathways (IR and dyslipidaemia) in high risk and T2D patients with curcumin and LCn-3PUFA supplementation was successful. However, this thesis failed to provide any evidence on beneficial effects of combining curcumin and LCn-3PUFA for better glycaemic control to delay the onset of T2D. This could partly be due to presence of any unknown interactions between the two bio-actives or may be due to uncertainties in co-administration of curcumin and LCn-3PUFA. Thus, paving a way for further research to investigate beneficial effects with single formulation (curcumin and LCn-3PUFA) for achieving glycaemic control. This thesis constitutes a noted contribution to the research area of biomarkers and novel intervention strategies for T2D, and also presents a set of riddles that provides an extensive scope for future research.

Thesis layout

This thesis by publication is presented as 7 chapters: general introduction and literature review, general methodology chapter, 2 papers published in peer reviewed journals, 2 papers submitted for publication (under review), and one is presented as an unpublished chapter.

Chapter 1- General introduction and literature review

This chapter describes prevalence, economic and health burden of T2D, prediabetes and pathological mechanisms involved in the progression of prediabetes state to overt T2D. This chapter also focuses on the role of bio-active compounds for prevention or delaying the onset of T2D.

❖ Chapter 2 – General methodology

This chapter describes detailed methodology, trial design and statistical analysis employed in the clinical trials (Chapter 4, 6 and 7).

❖ Chapter 3 − InsuTAG: A novel and physiologically relevant marker of insulin resistance and metabolic syndrome.

This chapter is presented as published paper "Thota RN, Abbott KA, Ferguson JJA, Veysey M, Lucock M, Niblett S, King K, Garg ML. InsuTAG: A novel physiologically relevant predictor for insulin resistance and metabolic syndrome. Scientific Reports. 2017; 7(1):15204." The paper presents necessity for developing a novel marker, cross sectional study methodology, statistical analysis, results and discussion on whether InsuTAG has the potential to identify insulin resistance and metabolic syndrome.

❖ Chapter 4 − Curcumin alleviates postprandial glycaemic response in healthy subjects: A cross over, randomised controlled study.

This chapter is presented as a paper (submitted MAR 18). It describes the study aims, design, methods, results and discussion on the effects of curcumin and omega-3 fatty acids for controlling the post-prandial glucose responses to a standardised high carbohydrate-fat meal in healthy adults.

❖ Chapter 5 − Curcumin and long-chain Omega-3 fatty acids for Prevention of type 2 diabetes (COP-D): study protocol for a randomised controlled trial.

This chapter is presented as a published paper 'Thota RN, Acharya SH, Abbott KA, Garg ML. Curcumin and long-chain Omega-3 polyunsaturated fatty acids for Prevention of type 2 Diabetes (COP-D): study protocol for a randomised controlled

trial. Trials. 2016; 17:565'. This chapter presents the detailed study protocol of COPD trial and provides a rationale for conducting a clinical trial with curcumin and LCn-3PUFA for controlling risk factors associated with progression of T2D.

❖ Chapter 6− Effects of curcumin and/or omega-3 polyunsaturated fatty acids on glycaemic control and blood lipids in individuals with high risk of T2D: A randomised controlled trial.

This chapter is presented as a submitted version 'Thota RN, Acharya SH, Garg ML. Effects of curcumin and/or omega-3 polyunsaturated fatty acids on glycaemic control and blood lipids in individuals with high risk of type 2 diabetes: A randomised controlled trial. (Manuscript submitted MAR 18). This chapter describes the aims, methods, results and discussion from COP-D trial.

Chapter 7 - Curcumin and/or omega-3 polyunsaturated fatty acids for amelioration of diabetic dyslipidaemia: a pilot randomised controlled trial. This chapter presents the study aims, design, methods and results from pilot randomised controlled trial, 'Curcumin And Long-chain omega-3 polyunsaturated

fatty acids **FOR** management of CardioVascular health in individuals with type 2 **D**iabetes (**CALFOR-CVD** trial).

❖ Chapter 8 – General discussion

This chapter focuses on discussion on overall results from the clinical trials, strengths and limitations of the respective trials, significance of this research in nutrition and diabetes research areas and future directions.